Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Crystal-to-crystal transformation upon dehydration of a copper(II) 2,2': $6^{\prime}, 2^{\prime \prime}$-terpyridine complex

Laurette Schmitt, Gaël Labat and Helen Stoeckli-Evans*

Institute of Physics, University of Neuchâtel, CH-2009 Neuchâtel, Switzerland Correspondence e-mail: helen.stoeckli-evans@unine.ch

Received 6 September 2010
Accepted 12 October 2010
Online 26 October 2010

The reaction of $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (terpy) with CuCl_{2} in the presence of sodium sulfite led to the synthesis of the ionic complex aquachlorido($2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridyl- $\left.\kappa^{3} N, N^{\prime}, N^{\prime \prime}\right) \operatorname{copper}($ II $)$ chlorido(dithionato- $\kappa O)\left(2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}\right.$-terpyridyl- $\left.\kappa^{3} N, N^{\prime}, N^{\prime \prime}\right)$ cuprate(II) dihydrate, $\left[\mathrm{CuCl}\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left[\mathrm{CuCl}\left(\mathrm{S}_{2} \mathrm{O}_{6}\right)\right.$ $\left.\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, (I), and the in situ synthesis of the $\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}$ dianion. Compound (I) is composed of a $[\mathrm{CuCl}$ (terpy) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$cation, a $\left[\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{O}_{6}\right)(\text { terpy })\right]^{-}$anion and two solvent water molecules. Thermogravimetric analysis indicated the loss of two water molecules at ca 363 K , and at 433 K the weight loss indicated a total loss of 2.5 water molecules. The crystal structure analysis of the resulting pale-green dried crystals, μ-dithionato- $\kappa^{2} O: O^{\prime}$-bis[chlorido $\left(2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}\right.$-terpyridyl$\left.\kappa^{3} N, N^{\prime}, N^{\prime \prime}\right)$ copper(II) $]$ monohydrate, $\left[\mathrm{Cu}_{2} \mathrm{Cl}_{2}\left(\mathrm{~S}_{2} \mathrm{O}_{6}\right)\left(\mathrm{C}_{15} \mathrm{H}_{11^{-}}\right.\right.$ $\left.\left.\mathrm{N}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, (II), revealed a net loss of 1.5 water molecules and the formation of a binuclear complex with two $[\mathrm{CuCl}-$ (terpy) $]^{+}$cations bridged by a dithionate dianion. The crystal-to-crystal transformation involved an effective reduction in the

Figure 1
A view of the molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
unit-cell volume of $c a 7.6 \%$. In (I), the ions are linked by $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the coordinated and solvent water molecules and O atoms of the dithionate unit, to form ribbon-like polymer chains propagating in [100]. These chains are linked by $\mathrm{Cu} \cdots \mathrm{Cl}$ interactions $[3.2626$ (7) \AA in the cation and 3.3492 (7) \AA in the anion] centred about inversion centres, to form two-dimensional networks lying in and parallel to ($0 \overline{1} 1$). In (II), symmetry-related molecules are linked by $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the partially occupied disordered water molecule and an O atom of the bridging thiosulfite anion, to form ribbon-like polymer chains propagating in [100]. These chains are also linked by $\mathrm{Cu} \cdots \mathrm{Cl}$ interactions [3.3765 (12) Å] centred about inversion centres to form similar two-dimensional networks to (I) lying in and parallel to ($0 \overline{2} 2$), crosslinked into three dimensions by $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}=\mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (water) interactions.

Comment

Crystal-to-crystal structural transformations are not uncommon and many of them are the result of dehydration of transition metal complexes or polymers (Habib et al., 2008; Lin et al., 2008; Mahmoudi \& Morsali, 2008; Mobin et al., 2009). Some of these structural transformations have been shown by in situ powder X-ray diffraction to be reversible on rehydration (Wang et al., 2007; Aslani et al., 2008; Sereda et al., 2009). The ligand $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (terpy) was first synthesized by Morgan \& Burstall (1932). Since then, a very large number of transition metal complexes containing terpy have been synthesized and studied for their optical and electrochemical properties, viz. metal-to-ligand charge transfer (MLCT) in the visible-light region, reversible reduction and oxidation, and fairly intense luminescence. A search of the Cambridge Structural Database (CSD, Version 5.1, last update May 2010; Allen, 2002) revealed the presence of more than 1100 structures involving terpy, the majority being coordination complexes.

The dithionate anion is a potentially useful component for the synthesis of multidimensional coordination polymers (Rusanov et al., 2003; Neels et al., 2003). A search of the CSD
revealed the presence of 119 transition metal complexes containing this anion. However, in the majority of cases it is not coordinated to the metal atom. Three coordination modes were found in this CSD search (see A, B and C in the Scheme below). Coordination mode A was observed for six compounds, of which four are copper(II) complexes (Bernhardt et al., 2004; Ishii, 2001a; Donlevy et al., 1990). Coordination mode B was observed for only two compounds, both of which are copper(II) complexes (Turba et al., 2008; Ishii, 2001a); one of them, catena-poly[(μ-dithionato)aqua[2,6-bis(2-pyridyl)pyridine]copper(II)], also involves a terpyridine ligand (Ishii, 2001a). Bridging mode C was observed in seven compounds, of which three involve a $\mathrm{Cu}^{\mathrm{II}}$ atom (Degtyarenko et al., 2008; Kim et al., 2003; Ishii, 2001b).

A

B

C

We report here the synthesis and crystal structure of a copper(II) terpy ionic complex, (I), with the in situ synthesis of the dithionate anion, which coordinates in mode A. On heating, (I) undergoes a crystal-to-crystal transformation to form a binuclear copper(II)-terpy dithionate-bridged complex, (II), with the anion coordinating in bridging mode C.

Complex (I) was synthesized by adding sodium sulfite to an aqueous solution of terpy and $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. It consists of a $\left[\mathrm{CuCl}(\text { terpy })\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$cation, a $\left[\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{O}_{6}\right) \text { (terpy) }\right]^{-}$anion and two solvent water molecules (Fig. 1). In the cation, atom Cu 2 is coordinated to three N atoms of the terpy ligand and a chloride ion in the basal plane, and to a water molecule in the apical position. The coordination environment can be described as distorted square-pyramidal, with a τ value for Cu 2 of 0.19 (where $\tau=0$ for square-pyramidal and 1 for trigonal-pyramidal; Addison et al., 1984; Spek, 2009). This cation has pseudo-mirror symmetry and is very similar to the same cation in aquachlorido($2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridyl)copper(II) chloride monohydrate, (III) (Schmitt et al., 2010). The latter possesses crystallographic mirror symmetry and was produced as a by-product of the synthesis of (I). In the anion of (I), atom Cu 1 is coordinated by the three N atoms of the terpy ligand and a chloride ion in the basal plane. The coordination geometry is completed by atom O 3 from the dithionate anion in the apical position. The coordination environment is also distorted square-pyramidal, with a τ value for Cu 1 of 0.18 . The majority of the bond distances and angles in the cation and anion (Table 1) are similar to those found in (III). The main difference concerns the apical $\mathrm{Cu}-\mathrm{O}$ distances: that involving an O atom of the dithionate anion, $\mathrm{Cu} 1-\mathrm{O} 1$, is 2.3901 (16) \AA, while that involving the coordinated water molecule, $\mathrm{Cu} 2-\mathrm{O} 1 W$, is 2.2816 (16) \AA. Interestingly, in complex (III), the $\mathrm{Cu}-\mathrm{O}$ (water) distance is significantly longer, at 2.3348 (19) Å.

In the crystal structure of (I), the ions are linked by $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the coordinated and solvent

Figure 2
The crystal packing of complex (I), viewed along the b axis, showing the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and the $\mathrm{Cu} \cdots \mathrm{Cl}$ interactions as thin lines (see Tables 1 and 2 for details). H atoms not involved in hydrogen bonding have been omitted for clarity.
water molecules and O atoms of the dithionate unit (Table 2), to form ribbon-like polymer chains. These chains are linked by $\mathrm{Cu} \cdots \mathrm{Cl}$ interactions $[3.2626$ (7) \AA in the cation and 3.3492 (7) A in the anion, see Table 1] centred about inversion centres, to form two-dimensional networks lying in and parallel to ($0 \overline{1} 1$), as shown in Fig. 2. The overall arrangement has pseudo- I centring (Spek, 2009). In the crystal structure, there is one signifiant $\mathrm{S}=\mathrm{O} \cdots \pi$ interaction, involving the $\mathrm{S} 2=\mathrm{O} 6$ bond and the $\mathrm{N} 4 / \mathrm{C} 16-\mathrm{C} 20$ pyridine ring of a neighbouring molecule at $(x, 1+y, z)$, with an $\mathrm{O} \cdots$ centroid distance of 3.275 (2) \AA and an $\mathrm{S}=\mathrm{O} \cdots \pi$ angle of $134.8(1)^{\circ}$. There is also a large number of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions involving both the water and the $\mathrm{S}=\mathrm{O} \mathrm{O}$ atoms, as well as a $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interaction (Table 2), and these lead finally to the formation of a three-dimensional network.

Previous work on similar complexes has shown that, by careful heating, the solvent and coordinated water molecules can be eliminated. This leaves free coordination sites on the metal atom that can be filled by suitably positioned O or N atoms (Sereda et al., 2008; Xue et al., 2008; Zhang et al., 2009). The emerald-green crystals of (I) were heated to 433 K by thermogravimetry, which indicated the loss of two water molecules at ca 363 K (weight loss of 3.94%, theoretical value 4.1%). The total weight loss at 433 K was 6.01% (equivalent to ca $2.5 \mathrm{H}_{2} \mathrm{O}$), whereas the theoretical value for the loss of three water molecules is 6.15%. The resulting material was found to be crystalline; the original crystals had retained their shape but were now pale-green in colour. X-ray diffraction analysis revealed that complex (I) had lost the coordinated water molecule in the cation and apparently only 1.5 solvent water molecules. Dehydration led to the formation of a centrosymmetric binuclear complex, (II), which is composed of two $[\mathrm{CuCl}(\text { terpy })]^{+}$cations bridged by a dithionate dianion and a partially occupied water molecule (Fig. 3). The crystal-to-

Figure 3
The molecular structure of complex (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The symmetry-related disordered water molecule is not shown. Atoms bearing the suffix 'a' are related to their unsuffixed equivalents by the symmetry operation $(2-x, 2-y, 1-z)$.
crystal transformation resulted in an effective unit-cell volume contraction of $c a 7.6 \%$, considering that for (I) $Z=2$ and $V=$ 1655.2 (3) \AA^{3}, while for (II) $Z=1$ and $V=765.7$ (2) \AA^{3}.

In (II), atom Cu 1 is coordinated to the three N atoms of the terpy ligand and a chloride ion in the basal plane, and to an O

Figure 4
The crystal packing of complex (II), viewed along the b axis, showing the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and the $\mathrm{Cu} \cdots \mathrm{Cl}$ interactions as thin lines (see Tables 3 and 4 for details). H atoms not involved in hydrogen bonding have been omitted for clarity.

Figure 5
An illustration of the transformation of the ionic complex, (I), into the binuclear complex, (II). [Note that the water molecule is only partially occupied (0.5) in (II).]
atom of the dithionate anion in the axial position. Again, the coordination environment can be described as distorted square-pyramidal, with a τ value of 0.16 . The $\mathrm{Cu}-\mathrm{Cl}$ and $\mathrm{Cu}-\mathrm{N}$ bond distances are similar to those in complexes (I) and (III) (Table 3). The main difference concerns the Cu O (dithionate) bond distance, which is longer than in (I) by 0.083 (2) \AA. These distances are comparable with the values observed in the copper(II) dithionate-bridged complex described by Ishii (2001b).

In the crystal structure of complex (II), molecules related by an inversion centre are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the disordered water molecule and an O atom of the bridging thiosulfite anion, so forming a ribbon-like polymer chain (Table 4 and Fig. 4). These chains are linked by weak $\mathrm{Cu} \cdots \mathrm{Cl}^{\mathrm{i}}$ interactions [3.3765 (12) \AA; see Table 3 for symmetry code] to form two-dimensional networks lying parallel to and in ($0 \overline{2} 2$), as shown in Fig. 4. As in (I), there are a number of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions involving both the water and the $\mathrm{S}=\mathrm{O}$ O atoms (Table 4), which lead finally to the formation of a three-dimensional network.

In conclusion, we have shown that, by careful drying, the water molecule coordinated to the cation in the ionic complex, (I), can be removed, and the vacant coordination site is then taken by an O atom of the thiosulfite ligand of the anion. This results in the transformation of the ionic complex (I) into a centrosymmetric binuclear complex, (II), as shown in Fig. 5.

Experimental

For the synthesis of complex (I), an aqueous solution (20 ml) of copper(II) chloride dihydrate ($0.429 \mathrm{mmol}, 75 \mathrm{mg}$) and $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$ terpyridine ($0.429 \mathrm{mmol}, 100 \mathrm{mg}$) was heated at 353 K for 1 h . After hot filtration, the green solution was cooled to room temperature and sodium sulfite ($1.717 \mathrm{mmol}, 216 \mathrm{mg}$) was added. The resulting solution was left in the fridge for two months and emerald-green blocklike crystals of (I) were obtained (yield $38 \mathrm{mg}, 20 \%$).

Pale-green crystals of (II) were obtained after thermogravimetric analysis of compound (I); see Comment. A sample of (I) (ca 20 mg) was heated to 433 K in a closed aluminium oxide crucible at a rate of $2 \mathrm{~K} \mathrm{~min}^{-1}$ (gas flow $150 \mathrm{ml} \mathrm{min}^{-1}$) at atmospheric pressure.

A small quantity of blue-green crystals were obtained as a by-product during the synthesis of (I). They were identified by X-ray crystallographic analysis to be the mononuclear complex aquachlorido($2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridyl)copper(II) chloride monohydrate

Table 1
Selected interatomic distances (\AA) for (I).

$\mathrm{Cu} 1-\mathrm{Cl} 1$	$2.2203(6)$	$\mathrm{Cu} 2-\mathrm{Cl} 2$	$2.2284(6)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$2.3901(16)$	$\mathrm{Cu} 2-\mathrm{O} 1 W$	$2.2816(16)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.0368(17)$	$\mathrm{Cu} 2-\mathrm{N} 4$	$2.0216(17)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$1.9342(16)$	$\mathrm{Cu} 2-\mathrm{N} 5$	$1.9447(16)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$2.0322(17)$	$\mathrm{Cu} 2-\mathrm{N} 6$	$2.0245(17)$
$\mathrm{Cu} 1 \cdots \mathrm{Cl}^{\mathrm{i}}$	$3.2626(7)$	$\mathrm{Cu} 2 \cdots \mathrm{Cl} 2^{\mathrm{ii}}$	$3.3492(7)$

Symmetry codes: (i) $-x+2,-y+2,-z$; (ii) $-x+1,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 6^{\text {iii }}$	0.84 (3)	1.95 (3)	2.787 (2)	176 (3)
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} 3 W$	0.89 (3)	2.06 (3)	2.918 (2)	162 (3)
$\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{O} 3^{\text {iv }}$	0.88 (3)	2.01 (3)	2.831 (2)	154 (3)
$\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O} 4^{\text {iii }}$	0.85 (2)	1.95 (2)	2.785 (2)	169 (4)
$\mathrm{O} 3 W-\mathrm{H} 3 W A \cdots \mathrm{O} 2 W^{\mathrm{v}}$	0.83 (3)	2.00 (3)	2.811 (2)	166 (3)
$\mathrm{O} 3 W-\mathrm{H} 3 W B \cdots \mathrm{O} 2$	0.82 (3)	2.24 (3)	3.052 (2)	168 (3)
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2 W^{\text {v }}$	0.95	2.47	3.407 (3)	169
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O} 2 W^{\text {v }}$	0.95	2.43	3.347 (3)	162
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O} 5^{\text {vi }}$	0.95	2.34	3.217 (3)	154
$\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{O}^{2}$	0.95	2.56	3.496 (3)	171
C12-H12A $\cdots \mathrm{O}^{\text {v }}$	0.95	2.56	3.335 (3)	139
C18-H18A \cdots O1 $W^{\text {vii }}$	0.95	2.57	3.213 (3)	126
C19-H19A \cdots O3 $W^{\text {vii }}$	0.95	2.50	3.446 (3)	178
$\mathrm{C} 22-\mathrm{H} 22 A \cdots \mathrm{O} 3 W^{\text {vii }}$	0.95	2.51	3.452 (3)	175
$\mathrm{C} 24-\mathrm{H} 24 A \cdots \mathrm{O} 6$	0.95	2.43	3.363 (3)	167
C27-H27A . ${ }^{\text {O6 }}$	0.95	2.19	3.141 (3)	179
$\mathrm{C} 29-\mathrm{H} 29 A \cdots \mathrm{Cl} 2^{\text {viii }}$	0.95	2.74	3.690 (3)	174

Symmetry codes: (iii) $x, y-1, z$; (iv) $x-1, y-1, z$; (v) $x+1, y, z$; (vi) $x+1, y-1, z$; (vii) $x-1, y, z$; (viii) $-x+2,-y+1,-z+1$.
(Schmitt et al., 2010), i.e. compound (III) mentioned in the Comment. The analytical and spectroscopic data for (I) and (II) are available in the archived CIF.

Compound (I)

Crystal data

$\left[\mathrm{CuCl}\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]-$
$\beta=82.870(11)^{\circ}$
$\left[\mathrm{CuCl}\left(\mathrm{S}_{2} \mathrm{O}_{6}\right)\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=878.68$
Triclinic, $P \overline{1}$
$a=8.0705(10) \AA$
$b=8.589$ (1) \AA
$c=25.177(3) \AA$
$\alpha=83.096(10)^{\circ}$

Data collection

Stoe IPDS II diffractometer Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
$T_{\text {min }}=0.254, T_{\text {max }}=1.00$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.116$
$S=1.06$
8888 reflections
485 parameters
6 restraints

Table 3
Selected interatomic distances (\AA) for (II).

$\mathrm{Cu} 1-\mathrm{Cl} 1$	$2.2220(11)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$1.934(3)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$2.473(2)$	$\mathrm{Cu} 1-\mathrm{N} 3$	$2.041(3)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.030(3)$		
$\mathrm{Cu} 1 \cdots \mathrm{Cl}^{\mathrm{i}}$	$3.3765(12)$		

Symmetry code: (i) $-x+1,-y+1,-z$.

Table 4
Hydrogen-bond geometry ($\AA,^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 2^{\text {ii }}$	0.88 (8)	2.05 (8)	2.803 (7)	142 (8)
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} 2^{\text {iii }}$	0.89 (9)	1.94 (10)	2.759 (7)	153 (10)
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O}^{\text {iv }}$	0.95	2.40	3.342 (5)	174
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 3^{\text {ii }}$	0.95	2.47	3.421 (5)	176
C9-H9 . O 12 W	0.95	2.47	3.404 (7)	168
C12-H12 . $\mathrm{O} 1{ }^{W}$	0.95	2.31	3.253 (7)	172
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O} 1^{\text {iii }}$	0.95	2.60	3.429 (5)	146

Symmetry codes: (ii) $-x+1,-y+1,-z+1$; (iii) $x, y-1, z$; (iv) $x-1, y, z$.

Compound (II)

Crystal data
$\left[\mathrm{Cu}_{2} \mathrm{Cl}_{2}\left(\mathrm{~S}_{2} \mathrm{O}_{6}\right)\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=842.65$
Triclinic, $P \overline{1}$
$a=8.1961(13) \AA$
$b=8.6029(15) \AA$
$\gamma=105.244(13)^{\circ}$
$c=12.2566$ (19) \AA
$\alpha=107.927(13)^{\circ}$
$\beta=99.171$ (13) ${ }^{\circ}$

Data collection

Stoe IPDS II diffractometer
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
$T_{\text {min }}=0.846, T_{\text {max }}=1.00$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
H atoms treated by a mixture of independent and constrained
$S=0.89$
2724 reflections
232 parameters
2 restraints

> 8262 measured reflections 2724 independent reflections 2001 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.055$

$$
\begin{gathered}
\text { refinement } \\
\Delta \rho_{\max }=0.28 \mathrm{e} \AA_{\circ}^{-3}
\end{gathered}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.20 .48 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0 .
\end{aligned}
$$

In a difference Fourier map for compound (II), a peak of 2.0 e \AA^{-3} was observed near an inversion centre. It was refined as a partially occupied solvent water molecule (O1W) with an occupancy of 0.5 . For compound (I), the water H atoms were located in a difference electron-density map and refined isotropically, with $\mathrm{O}-\mathrm{H}$ distance restraints of 0.84 (2) \AA. For compound (II), the water H atoms could also be located in a difference electron-density map and they were refined with $\mathrm{O}-\mathrm{H}$ distance restraints of $0.84(2) \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{O})$. For both (I) and (II), C-bound H atoms were included in calculated positions and treated as riding, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. For compound (I), 16 strong reflections were excluded from the structure factor file. This was due to the fact that the crystal exposure time was too long and this caused overloads on the image plate. The individual intensities of these reflections could not be measured accurately and they were omitted from the final
structure factor file. A comparison of similar bond lengths in the two crystal structures shows that this has little effect on the final structure analysis.

For both compounds, data collection: $X-A R E A$ (Stoe \& Cie, 2006); cell refinement: $X-A R E A$; data reduction: X-RED32 (Stoe \& Cie, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97, PLATON and publCIF (Westrip, 2010).

This work was supported by the Swiss National Science Foundation (grant No. FN 20-111738).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GA3158). Services for accessing these data are described at the back of the journal.

References

Addison, A. W., Rao, T. N., Reedijk, J. V.-R., Jacobus, V. \& Gerrirg, C. (1984). J. Chem. Soc. Dalton Trans. 7, 1349-1355.

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Aslani, A., Morsali, A. \& Zeller, M. (2008). Dalton Trans. pp. 5173-5177.
Bernhardt, P. V., Dyahningtyas, T. E., Han, S. C., Harrowfield, J. M., Kim, I. C., Kim, Y., Koutsantonis, G. A., Rukmini, E. \& Thuery, P. (2004). Polyhedron, 23, 869-877.
Degtyarenko, A. S., Solntsev, P. V., Krautscheid, H., Rusanov, E. B., Chernega, A. N. \& Domasevitch, K. V. (2008). New J. Chem. 32, 1910-1918.

Donlevy, T. M., Gahan, L. R., Hambley, T. W., Hanson, G. R., Markiewicz, A., Murray, K. S., Swann, L. L. \& Pickering, S. R. (1990). Aust. J. Chem. 43, 1407-1419.

Habib, H. A., Sanchiz, J. \& Janiak, C. (2008). Dalton Trans. pp. 1734-1744.
Ishii, M. (2001a). Bull. Yamagata Univ. Nat. Sci. 15, 1-6.
Ishii, M. (2001b). Bull. Yamagata Univ. Nat. Sci. 15, 7-12.
Kim, Y., Skelton, B. W. \& White, A. H. (2003). Acta Cryst. C59, m546m548.
Lin, J.-G., Xu, Y.-Y., Qiu, L., Zang, S.-Q., Lu, C.-S., Duan, C.-Y., Li, Y.-Z., Gao, S. \& Meng, Q.-J. (2008). Chem. Commun. pp. 2659-2662.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Mahmoudi, G. \& Morsali, A. (2008). Cryst. Growth Des. 8, 391-394.
Mobin, S. M., Srivastava, A. K., Mathur, P. \& Lahiri, G. K. (2009). Inorg. Chem. 48, 4652-4654.
Morgan, G. T. \& Burstall, F. H. (1932). J. Chem. Soc. pp. 20-30.
Neels, A., Alfonso, M., Gonzalez Mantero, D. \& Stoeckli-Evans, H. (2003). Chimia (Aarau), 57, 619-622.
Rusanov, E. B., Ponomarova, V. V., Komarchuk, V. V., Stoeckli-Evans, H., Fernandez-Ibanez, E., Stoeckli, F., Sieler, J. \& Domasevitch, K. V. (2003). Angew. Chem. Int. Ed. 42, 2499-2501.
Schmitt, L., Labat, G. \& Stoeckli-Evans, H. (2010). Acta Cryst. E66, m1169.
Sereda, O., Neels, A., Stoeckli, F., Stoeckli-Evans, H. \& Filinchuk, Y. (2008). Cryst. Growth Des. 8, 2307-2311.
Sereda, O., Stoeckli-Evans, H., Dolomanov, O., Filinchuk, Y. \& Pattison, P. (2009). Cryst. Growth Des. 9, 3168-3176.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stoe \& Cie (2006). X-AREA (Version 1.35) and X-RED32 (Version 1.31). Stoe \& Cie GmbH, Darmstadt, Germany.
Turba, S., Walter, O., Schindler, S., Nielsen, L. P., Hazell, A., McKenzie, C. J., Lloret, F., Cano, J. \& Julve, M. (2008). Inorg. Chem. 47, 9612-9623.
Wang, X.-Y., Scancella, M. \& Sevov, S. C. (2007). Chem. Mater. 19, 45064513.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Xue, D.-X., Zhana, W.-X., Chen, X.-M. \& Wang, H.-Z. (2008). Chem. Comтии. pp. 1551-1553.
Zhang, Y.-J., Liu, T., Kanegawa, S. \& Sato, O. (2009). J. Am. Chem. Soc. 131, 7942-7943.

